Matrix decomposition

The Mutual Information in Random Linear Estimation Beyond i.i.d. Matrices

There has been definite progress recently in proving the variational single-letter formula given by the heuristic replica method for various estimation problems. In particular, the replica formula for the mutual information in the case of noisy …

Streaming Bayesian inference: Theoretical limits and mini-batch approximate message-passing

In statistical learning for real-world large-scale data problems, one must often resort to “streaming” algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of …

Statistical and computational phase transitions in spiked tensor estimation

We consider tensor factorizations using a generative model and a Bayesian approach. We compute rigorously the mutual information, the Minimal Mean Square Error (MMSE), and unveil information-theoretic phase transitions. In addition, we study the …

Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization

We analyze the matrix factorization problem. Given a noisy measurement of a product of two matrices, the problem is to estimate back the original matrices. It arises in many applications, such as dictionary learning, blind matrix calibration, sparse …