In statistical learning for real-world large-scale data problems, one must often resort to “streaming” algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of …

We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense …

We consider tensor factorizations using a generative model and a Bayesian approach. We compute rigorously the mutual information, the Minimal Mean Square Error (MMSE), and unveil information-theoretic phase transitions. In addition, we study the …

We consider the problem of Gaussian mixture clustering in the high-dimensional limit where the data consists of m points in n dimensions, n,m → ∞ and α = m/n stays finite. Using exact but non-rigorous methods from statistical physics, we determine …

We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, …

We study optimal estimation for sparse principal component analysis when the number of non-zero elements is small but on the same order as the dimension of the data. We employ approximate message passing (AMP) algorithm and its state evolution to …

In this paper, we consider the phase recovery problem, where a complex signal vector has to be estimated from the knowledge of the modulus of its linear projections, from a naive variational Bayesian point of view. In particular, we derive an …

Compressed sensing is designed to measure sparse signals directly in a compressed form. However, most signals of interest are only “approximately sparse”, i.e. even though the signal contains only a small fraction of relevant (large) components the …

Powered by the Academic theme for Hugo.